
On the Criteria To Be Used
in Decomposing Systems

into Modules

David L Parnas, 1972

Modular Programming

• Given: Modularisation is a good idea

• Advantages:

• Modules can be written without knowledge about the
code of other modules

• Modules can be reassembled and replaced without
reassembling the whole system

Expected Benefits

• Shorter development time

• Greater product flexibility

• Improved Comprehensibility

KWIC

• Key Word In Context

• Used for reference systems

KWIC
• We see the following modules:

• We see the following modules:

• see the following modules: We

• the following modules: We see

• following modules: We see the

• modules: Wee see the following

KWIC
• We see the following modules:

• We see the following modules:

• see the following modules: We

• the following modules: We see

• following modules: We see the

• modules: We see the following

Modularization 1

• Module 1: Input

• Module 2: Circular Shift

• Module 3: Alphabetizing

• Module 4: Output

• Module 5: Master Control

Modularization 2
• Module 1: Line Storage

• Module 2: Input

• Module 3: Circular Shifter

• Module 4: Alphabetizer

• Module 5: Output

• Module 6: Master Control

Modularization 1

https://blog.acolyer.org/2016/09/05/on-the-criteria-to-be-used-in-decomposing-systems-into-modules/

Modularization 2

https://blog.acolyer.org/2016/09/05/on-the-criteria-to-be-used-in-decomposing-systems-into-modules/

Changes
1. Input format

2. Decision to store all lines in core

3. Decision to pack characters four to a word

4. Decision to store circular shifts as index instead of
writing them out

5. Decision to alphabetise once rather then search or
partially alphabetise

Independent Development

• Modularization 1: Interfaces between modules are
(fairly complex) format and table organisations

• Modularization 2: Interfaces are function names and
parameter descriptions

Comprehensibility

“The system [1] will only be comprehensible as a
whole. It is my subjective judgment that this is

not true in the second modularization.“

The Criteria

• Modularization 1: Flowchart based

• Modularization 2: Information hiding

Efficiency and
Implementation

• Danger: Less efficient because of many switches
between modules

• Proposal: Way to write code that assembles
subroutines to inline them into calling code

Comprehensibility

“We have tried to demonstrate by these examples
that it is almost always incorrect to begin the
decomposition of a system into modules on the
basis of a flowchart. We propose instead that
one begins with a list of difficult design
decisions or design decisions which are likely
to change. Each module is then designed to hide
such a decision from the others.“

Resources

• https://www.win.tue.nl/~wstomv/edu/2ip30/
references/criteria_for_modularization.pdf

• https://prl.ccs.neu.edu/img/p-tr-1971.pdf

• https://blog.acolyer.org/2016/09/05/on-the-criteria-to-
be-used-in-decomposing-systems-into-modules/

• https://www.slideshare.net/ufried/excavating-the-
knowledge-of-our-ancestors

https://www.win.tue.nl/~wstomv/edu/2ip30/references/criteria_for_modularization.pdf
https://www.win.tue.nl/~wstomv/edu/2ip30/references/criteria_for_modularization.pdf
https://prl.ccs.neu.edu/img/p-tr-1971.pdf
https://blog.acolyer.org/2016/09/05/on-the-criteria-to-be-used-in-decomposing-systems-into-modules/
https://blog.acolyer.org/2016/09/05/on-the-criteria-to-be-used-in-decomposing-systems-into-modules/
https://www.slideshare.net/ufried/excavating-the-knowledge-of-our-ancestors?from_action=save
https://www.slideshare.net/ufried/excavating-the-knowledge-of-our-ancestors?from_action=save

